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The formula which I propose for fitting vW2 including the 
E98,398 observed scale violations comes from combining aspects of 
one dimensional phase space for the momentum carriers(quarks and 
gluons) as originally derived by Bjorken & Paschosl, generalized 
vector dominance (GVD) as applied by Schildknecht2 to the domain 
of small Q2 inelastic scattering, and a phenomenological approabh 
to the scaling violation which owes a debt to the QCD formulation 
of Buras & Gaemers3. I have discussed my fits with all of the 
above theorists (except Gaemers) and they were interested and 
intrigued by the connections among their respective works. A 
number of other theorists have seen this work and were interested 
in varying degrees. 

I take as my model a Heisenberg picture in which the 
proton can be viewed as having a probability Pi of being in 
various initial states when it scatters an incident muon (virtual 
photon). The scattering itself is assumed to be only from spin 
l/2 quarks and to be elastic. (Presumably, radiative corrections 
should be applied to the quark lines, but never mind that for 
the moment, since the quarks are never observed anyhow.) The 
quarks have the valence electric charges (-l/3, 2/3, 2/3) plus 
any number of sea quark anti-quark pairs with (+1/3, +2/3) 
charges taken with equal probability. 

Each of the initial proton states is further taken to be 
a state in which i quarks and j gluons are distributed in 
momentum according to a simple one dimensional phase space 
distribution as first considered by Bjorken and Paschosl. 
I depart from them by including a boson propagator factor for 
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sea quark, anti-quark pairs. This factor can be thought of 
as an expression for the uncertainty principle applied to 
the sea quarks in a virtual state. Schildknecht has justified 
this approach with a proper calculation in which the form 
chosen was derived from the basic principles of GVD and 
dispersion theory. The general expression for the momentum 
carrier particle density and the momentum density as a 
function of x becomes, respectively: 

P(i,j) is the probability of the proton being found in a 
state with i quarks and j gluons. Note that the following 
normalizations must,hold; 

The value of iii) must g,ive the average total number of 
momentum carriers and iv) must express conservation of linear 
momentum. We are interested in the lowest values of i and 
in finding the appropriate values for j. We also determine 

that the average value of j is logarithmically varying with Q2. 
This result is responsible for the scale violation we observe 
in this model, is physically reasonable (the number of gluons 
ovserved should increase as Q2 increases and the interaction 
four-volume shrinks), and is found in a comparable form in the 
QCD formulae derived by Buras and Gaemers3. They find a 

log(log(Q2)) behavior while I find a lg(Q2)% behavior. Both 

are extremely slowly varying functions of 42, of course. 
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Notice that equation xi) integrates to the value (Gi + i), 
exactly equal to the total number of momentum carriers in the 
state. Also,nota that,.: 

I 

+q j>@dgd = $~$%L 

That is to say, the total momentum carried .by the (Gi + i) 
momentum carriers exact'lp,equals the proton's momentum seen 
in the infinite momentum frame (as is necessary for the 
Peynman picture of x to be reconciled with the Bjorken 
definition. With these observations in mind, we combine 
equations vi), viii) and xi) to obtain: 

This is the easy part, Now, we must discover how to 
describe P(i,<j>L Hopefully, we can get away with only a 
few values for i before P-to. We start with the value i=3 
(valence quarks). In this case: 

We further guess (!) that P(3,<j>) is constant. This gives: 
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Next, dn we must relate xdx to the nuclear structure function 
vW2 (also known as F2). The relationship as shown by Bjorken & 
Paschos is: 

Q-1 

where <q2> is the average quark charge squared for the scatterers 
measured in units of the charge of the electron. We have, therefore: 

d) g CXJ = ;s 2 2 g; 
isf -8B 

/ 

Our problem now 1s to determine the appropriate description 
for dnij - for various values of i and j. dx Since j is not directly 
observable, we will average over j for particular values of i: 

,,,a.) 2 P(i,i)xdn e- 2 pc,i/q->) F zj 0 
‘SO 1 91 % cfx 

The average value of j can be expected to increase with 
Q2 on general physical grounds as more and more gluons virtually 
emitted from quark lines are seen as Q2 increases. Experimentally, 
I find that <j> varies approximately as &log (92 + Mo2/Mo2). 
Buras and Gaemers parameterize the Q2 variation as log 
(log [Q2/A21/log [Qo2/n21L This is unsatisfactory as it 

blows up as Q2 + 0. They have no prescription for going to zero. 
I chose a form that goes smoothly to Q2=0, but the functional 
form %log (Q2 + Mo2/Mo2) is not determined from theory and 
is therefore not required. I chose it by looking at our 
scale violation 

w ej>g 

data. We get with this ansatz: 

clearly there are Gio gluons accompanying a state of i quarks 
as seen by a real photon (Q2=O). 

Now, we can write the phase space for a state containing 
i quarks and <j> gluons as: 
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The next appropriate value for i is 5, since there can be 
three valence quarks plus one sea quark - antiquark pair due 
to quantum fluctuations (or GVD if you prefer). The probability 
P(5,<j>), however, depends on various kinematic factors since 
the sea quarks appear only as a fluctuation. On the basis of 

special relativity, the Heisenberg Uncertainty Principle and 
dimensional analysis, we guess that: 

We can rewrite equation xviii) as: 

From equation xx) we can find: 

since, in the symmetric SU4 (or SU6): 

Now, if the proton had unit probability to appe-ar in this 
5mrquark state we would demand: 
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Thus, for Q2 " MO 2 , we have: 

For values of Q2 5 Mo2, the prescription is not clear at all. 
One way to proceed would be to rewrite the propagator factor 
in terms of X and S again and observe that the integral is 
convergent for g, spacelike values of Q2 (including Q2=O). 
This would give: 

This is equivalent to saying that C5 is constant only for 
Q2 >> Mo2. At Q2=0, to normalize the momentum to unity, the 
expression would be: 

This gives a number which is orders of magnitude smaller than 
the real value of "incl (Q2=O). A much closer estimate is 
received by merely letting C5 be constant and evaluating it For 
Q2 >> Mo2. As R. Wilson and B.Gordan' have pointed out, this 
gives about 50ub as the extrapolated value of cT at Q2=0. The 
true real photon cross section is more like 118ub. They regard 
this as a serious flaw in the model. To me it's a miracle that 
it comes as close as it does given the considerations noted 
above. For this reason, I do not think it is appropriate to 
force the fit to be constrained to the optical point. Clearly 
it is interesting that it comes close and this circumstance 
demands further analysis of why, but it is not a simple question 
and is not a reason to abandon the fit and its interpretation 
for Q2 >> MO 2 . 

The analysis could be continued for i = 7, 9, ---- etc., 
but I prefer to fit only the first two terms as they nearly 
saturate the momentum integral. We get, therefore: 
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*jr& Jx> A = Probability proton is in 3 quark plus 
gluon state. 

B = Probability proton is in 5 quark plus 
gluon state. 

When this form was fitted by me to the data with R=O.19, I found: 

.bOSZ ,050 

When I tried fitting to the combined SLAC (Riordan)/E-398 
I found similar values provided. I let the overall SLAC 
normalization float with E-398. I have not tried varying 

data, 

the value or functional form of R so far, but B. Gordan .(Harvard) 
hasdo'ne so and finds rather good fits for the Field & Feynman form: 

There is no reason to believe R=constant, so I am interested 
in investigating this R question. Meanwhile, I hope the 
basis for the fit has been clarified (and its questionable 
aspects clearly admitted). 
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